Computing the Hausdorff distance between two B-spline curves

نویسندگان

  • Xiao-Diao Chen
  • Weiyin Ma
  • Gang Xu
  • Jean-Claude Paul
چکیده

This paper presents a geometric pruning method for computing the Hausdorff distance between two B-spline curves. It presents a heuristic method for obtaining the one-sided Hausdorff distance in some interval as a lower bound of the Hausdorff distance, which is also possibly the exact Hausdorff distance. Then, an estimation of the upper bound of the Hausdorff distance in an sub-interval is given, which is used to eliminate the sub-intervals whose upper bounds are smaller than the present lower bound. The conditions whether the Hausdorff distance occurs at an end point of the two curves are also provided. These conditions are used to turn the Hausdorff distance computation problem between two curves into aminimumormaximumdistance computation problembetween a point and a curve,which can be solved well. A pruning technique based on several other elimination criteria is utilized to improve the efficiency of the new method. Numerical examples illustrate the efficiency and the robustness of the new method. © 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing a compact spline representation of the medial axis transform of a 2D shape

We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizi...

متن کامل

Projection of curves on B-spline surfaces using quadratic reparameterization

Curves on surfaces play an important role in computer aided geometric design. In this paper, we present a hyperbola approximation method based on the quadratic reparameterization of Bézier surfaces, which generates reasonable low degree curves lying completely on the surfaces by using iso-parameter curves of the reparameterized surfaces. The Hausdorff distance between the projected curve and th...

متن کامل

Computing the Hausdorff Distance between Curved Objects

The Hausdorff distance between two sets of curves is a measure for the similarity of these objects and therefore an interesting feature in shape recognition. If the curves are algebraic computing the Hausdorff distance involves computing the intersection points of the Voronoi edges of the one set with the curves in the other. Since computing the Voronoi diagram of curves is quite difficult we c...

متن کامل

Approximate computation of curves on B-spline surfaces

Curves on surfaces play an important role in computer-aided geometric design. Because of the considerably high degree of exact curves on surfaces, approximation algorithms are preferred in CAD systems. To approximate the exact curve with a reasonably low degree curve which also lies completely on the B-spline surface, an algorithm is presented in this paper. The Hausdorff distance between the a...

متن کامل

GPU-accelerated Hausdorff distance computation between dynamic deformable NURBS surfaces

We present a parallel GPU-accelerated algorithm for computing the directed Hausdorff distance from one NURBS surface to another, within a bound. We make use of axis-aligned bounding-box hierarchies that bound the NURBS surfaces to accelerate the computations. We dynamically construct as well as traverse the bounding-box hierarchies for the NURBS surfaces using operations that are optimized for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2010